Parallel Implementation of Hyperpath based Railway Assignment
- an Application to Tokyo Metropolitan Rail Network -

Hideki YAGINUMA
yaginuma@civil.t.u-tokyo.ac.jp
Department of Civil Engineering
The University of Tokyo
1. Urban railway network in TMA

Tokyo Metropolitan Area (TMA) is a huge capital area and has highly dense railway network.

- **Capital area**
 - Size: The radius of 70km from the city center (Tokyo station).
 - Population: About 35 million.

- **Railway Network**
 - Size: About 130 lines and 1800 stations.
 - Total number of daily passenger is 40 million.

The largest urban railway network in the world.
1. Mutual direct operation in TMA

Mutual direct mean direct operation across different line or different railway companies (operators) line
1. Railway congestion in TMA

Railway congestion has been a serious problem since 1960s. Average in-vehicle congestion rate (CR) decreased to 170% in 2005 in comparison with the 250% in 1960s.

However commuters *still* suffer from physical and mental burdens caused by railway congestion during peak period.
1. Railway congestion in TMA

Railway congestion has been a serious problem since 1960s.

Average in-vehicle congestion rate (CR) decreased to 170% in 2005 in comparison with the 250% in 1960s.

“Congestion Rate (CR)”: index of congestion widely used in Japan.

\[
\text{CR(\%)} := \frac{\text{passenger link volume}}{\text{link capacity}} \times 100
\]

Source: Ministry of Land, Infrastructure, Transport and Tourism (MLIT)
1. Masterplan for urban railway in TMA

• The 18th masterplan for urban railway network in TMA
 (Planed in 2000 by the National Council for Transport Policy)

This masterplan proposed the following target toward 2015:
 • Average congestion rate: less than 150%
 • Maximum congestion rate for each line: less than 180%
 • Reduce transfer time between stations and reduce congestion in station

However, the current conditions in 2010 are still:
 ✓ Average congestion rate: About 170%
 ✓ Maximum congestion rate: More than 180% in 18 lines
 ✓ Transfer time: increase 11% in 120 stations of TMA

Therefore, these targets have not yet been well achieved probably due to
 - Budget constraints for constructing new lines
 - Unexpected induced congestion
1. Types of congestions and their countermeasures

• Typical 4 types of railway congestions (Morichi, 2000)

 i. In-vehicle congestion

 ii. Train delay (Railroad congestion)

 iii. Terminal congestion

 iv. Congestion caused by the closure of railroad crossings

• Some measures were already conducted for reducing congestions:

 • Constructions of connecting lines / four-tracks line / Mutually direct operation

 • Increase in service frequency

 • Renovation of stations (e.g. Transfer route, entrance gate, platform door)

Indeed, these measures helped to reduce serious congestion to some extent by increasing capacity and reducing travel time.
1. Negative side-effects of urban rail policies

However, some railway policies, such as high frequent operation and mutually direct operation, have caused “new network congestion problems”.

Ex. Increase in service frequency

- In the case of moderate frequency level, delay do not occur so often. Therefore, in-vehicle and waiting times do not vary and provide regular services.

- In the case of high frequency level, however, delay occurs so often. Therefore, in-vehicle and waiting times tend to increase by “knock-on train delay”.

Previous demand forecasting methods were not able to explicitly consider these network congestion problems.
2. Literature Review

• Railway network services have some **specific characteristics:**
 – Access/egress to stations
 – Service frequency (waiting time)
 – Line transfer
 – Capacity of train vehicle and railroad

• Railway demand forecasting model in TMA:

These models are analogous to **car drivers behavior in road networks**, and do not consider some typical aspects of public transportation: **The effects of “Service Frequency (or Waiting Time at stops)”**
2. Literature Review

• Public transit assignment models:
 - De Cea and Fernandez (1993): considered congestion with effective frequency.
 - Kurauchi et al. (2003): capacity constrained transit assignment model.
 - Cepeda et al. (2006): application to the real urban network (Stockholm in Sweden, Winnipeg in Canada)
 - Yaginuma et al. (2010): considered two congestion effects and application to real small size network.

• FBTA model explicitly consider the some public transportation specific properties, frequency especially. However, there are no practical applications to large-scale network like in TMA.

• Solution algorithms of FBTA models are highly computational exhaustive compared to standard equilibrium assignment models.
To conduct quantitative evaluation of railway congestion reducing polices, this study develops a railway demand forecasting system considering congestion effects:

1. Develop the hyperpath-based railway route assignment model considering in-vehicle and railroad congestions, station to station transfer behavior.

2. Accelerate hyperpath search by the parallelization for the practical use of the proposed system.

3. Apply the system to the Tokyo metropolitan area network and check the validity and the effectiveness of the proposed modeling system.
3. Definition of hyperpath

- Behavioral assumptions:
 - Transit: operated based on frequency (not on schedule)
 - Passenger: can only observe the next line to be served
 - Passengers make en-route choice with common lines problems

Common lines problems (Chiriqui & Ronolland 1975)

Passenger who takes the first vehicle to come within his/her “attractive set” lines can get to his/her destination earliest.

Attractive set (choice set) := “Hyperpath”

Strategy of riding trains to the destination (choice set of links)

Passenger’s hyperpath

= An attractive set with the minimum expected cost.
A hyperpath is composed of a set of single and/or multiple routes.
3. Validity of applying FBTA models to TMA

Trains are usually operated based on timetable (schedule) in Japan. But in TMA, there are

- Highly frequent operations (e.g. 2 minutes headway during peak).
- Chronic train delay due to severe congestion.

⇒ Passenger might not understand timetable perfectly but might recognize service frequency.

- During peak period, FBTA model might be reasonable. So, I apply FBTA in TMA rail network.
- FBTA enables to conduct an analysis with a static framework leading to the computational efficiency.
3. Network representation of hyperpath

Hypergraph Representation:

Describe passenger behavior in detail between OD pairs:

(Origin-Destination)
3. Passenger’s behavioral principle

- Passenger chooses the hyperpath p that minimizes his/her expected generalized cost g:

$$ g_p = \phi \sum_{a \in L_p \cap D_p} \alpha_{ap} t_a + \omega \sum_{a \in L_p} \alpha_{ap} t_a + \varphi \sum_{i \in S_p} \frac{\beta_{ip}}{F_{ip}} + \xi \sum_{a \in L_p} \alpha_{ap} CDU_a, $$

Sum-up of frequency in link a include out-going node i:

$$ F_{ip} = \sum_{a \in OUT_{p(i)}} f_{l(a)} , $$

Effective frequency:

$$ f_{l(a)} = \frac{1}{w_{l(a)}} = \left[\frac{1}{F_{ip}} + \rho \left(\frac{x_a}{Cap_{l(a)}} \right)^\kappa \right]^{-1}, $$

Congestion disutility:

$$ CDU_a = t_a \left(\frac{x_a}{Cap_{l(a)}} \right)^\psi. $$

1. Expected **in-vehicle time** in line links
 - unchanged cost by congestion.

2. **Station to station transfer time** in transfer links
 - unchanged cost by congestion.
3. Passenger’s behavioral principle

- Passenger chooses the hyperpath \(p \) that minimizes his/her expected generalized cost \(g \):

\[
g_p = \phi \sum_{a \in L_p \setminus D_p} \alpha_{ap} t_a + \omega \sum_{a \in L_p} \alpha_{ap} t_a + \varphi \sum_{i \in S_p} \frac{\beta_{ip}}{F_{ip}} + \xi \sum_{a \in L_p} \alpha_{ap} CDU_a,
\]

\(\phi, \varphi, \xi, \omega, \kappa, \psi \) : Parameter,
\(\alpha, \beta \) : through probability,
\(x_a \) : link volume.

Sum-up of frequency in link \(a \) include out-going node \(i \) :

\[
F_{ip} = \sum_{a \in OUT_{ip}} f_{l(a)},
\]

Effective frequency:

\[
f_{l(a)}' = \frac{1}{w_{l(a)}} = \left[\frac{1}{F_{ip}} + \rho \left(\frac{x_a}{Cap_{l(a)}} \right)^\kappa \right]^{-1},
\]

Congestion disutility:

\[
CDU_a = t_a \left(\frac{x_a}{Cap_{l(a)}} \right)^\psi.
\]

3. Expected waiting time in nodes

- Effective frequency (EF) is defined at the inverse of frequency and changes with the delay (railroad congestion) level.

- EF describes the frequency change via “congestion index”.
 If link flow increases, EF decreases.
 If capacity increases, EF increases.
3. Passenger’s behavioral principle

- Passenger chooses the hyperpath p that minimizes his/her expected generalized cost g:

$$g_p = \phi \sum_{a \in L \cap D_p} \alpha_{ap} t_a + \omega \sum_{a \in L_p} \alpha_{ap} t_a + \phi \sum_{i \in S_p} \frac{\beta_{ip}}{F_{ip}} + \xi \sum_{a \in L_p} \alpha_{ap} CDU_a,$$

$\phi, \phi, \xi, \omega, \kappa, \psi$: Parameter,
α, β: through probability,
x_a: link volume.

Sum-up of frequency in link a include out-going node i:

$$F_{ip} = \sum_{a \in OUT_p(a)} f_{l(a)},$$

Effective frequency:

$$f_{l(a)} = \frac{1}{w_{l(a)}} = \left[\frac{1}{F_{ip}} + \rho \left(\frac{x_a}{Cap_{l(a)}} \right)^\kappa \right]^{-1},$$

Congestion disutility:

$$CDU_a = t_a \left(\frac{x_a}{Cap_{l(a)}} \right)^\psi.$$

Feedback loop exists if congestion are considered (Update link volume x_a)

4. Congestion disutility in line links

- passenger perceived disutility change with in-vehicle congestion, and is defined as the product of in-vehicle time and congestion index.
3. Loading passenger demand to the network

Loading passenger OD demand on the minimum-cost hyperpath:

- Passengers are loaded to each link proportionally to the service frequency of the links.

Example: two outgoing links

When 1000 passengers come to node i, they are loaded to links a and b as follows:

$$\text{link } a = 400 \left(= 1000 \times \frac{8}{8+12} \right)$$

$$\text{link } b = 600 \left(= 1000 \times \frac{12}{8+12} \right).$$
3. Solution algorithm (Method of Successive Average: MSA)

STEP 0. Initialization
- SET: Iteration $n=0$,
- Link flow: $x_a=0$, $CDU=0$

STEP 1-1. Minimum cost hyperpath search
- For a given destination.

STEP 1-2. Flow assignment
- Using frequency for given STEP 1-1 results.
- And repeat flow assignment for all origin

Repeat for all destinations

STEP 2. Update link flow and variables
- Link flow=average x_{n+1} and x_n
- Update : EF, CDU, $n+1$

Repeat this until n reached to the threshold or it satisfies convergence criteria.

MSA is an iterative method to search the equilibrium condition.
I check the **equilibrium property** of the proposed model using VIP (variational inequality problem) by referring Wu et al. (1994).

Assume that passenger flows on the network satisfy Wardrop’s user equilibrium condition.

[VIP] Find equilibrated link flows x^* and hyperpath flows h^* which satisfy

\[
g_p(x^*)^T(x - x^*) + W^T(h - h^*) \geq 0
\]

\[
\forall x \in X \text{ and } \forall h \in \Omega
\]

where,

- W: vector of waiting times for all hyperpath
- Ω: set feasible hyperpath flow
- X: set of feasible link flow

[Theorem 1]

Assume that $g_p(x)$ is continuous and Ω is a compact and convex set. Then there is at least one solution of VIP

[Theorem 2]

Consider the VIP. Then, x^* and $W^T h^*$ are unique if $g_p(x)$ is a strictly monotone function.

- ✓ The generalized cost functions of the proposed model depends only on the vector of link flows.
- ✓ Functions for effective frequency and congestion disutility are both convex.

Through rough check, I anticipate that the proposed model would satisfy the theorems by Wu et al. However, there is a need for rigorous proof.
1. Program execution environment verification by focusing on the types of compiler and optimization options.

- Compiler
 GCC (GNU Compiler Collection) and Intel

- Optimization options

<table>
<thead>
<tr>
<th>Compile Option</th>
<th>Effect of Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaultx (None option)</td>
<td>None optimization</td>
</tr>
<tr>
<td>O2</td>
<td>Increasing the execution speed by vectorization</td>
</tr>
<tr>
<td>O3</td>
<td>O2 + Optimize of memory data access</td>
</tr>
<tr>
<td>fast (use only Intel)</td>
<td>O3 + Optimize of function used in compiler</td>
</tr>
</tbody>
</table>
4. Strategy of accelerating algorithm

2. Faster data access
 To accelerate the large network data access, I apply the linked list data structure.

3. Faster hyperpath search algorithm
 Apply the Hyperpath-Dijkstra algorithm (Cominetti & Correa 2001).
 Theoretical computation time reduces from $O(m^2)$ to $O(m \log m)$
 (m: number of links)

4. Acceleration of iterative process
 Apply the parallelization of hyperpath search
4. Parallelization of hyperpath search

• In solution algorithm, the “hyperpath search” account for the 91% of the total computation time (Yaginuma et al. 2010).

• It is possible to conduct hyperpath search for each destination node separately.

Parallelization of hyperpath search for each destination node is implemented with multi-thread computing.
4. Testing with an artificial small network

Specification

- **10×10 square grid network**
- Create the 100 test networks and transform them into hypergraph representation
 - Average # of nodes: 897
 - Average # of link: 2687
- Implementation environment: C++ with Open MP library
- Machine spec: Intel Core i7 with 8G memory

<table>
<thead>
<tr>
<th>Variable</th>
<th>Generating procedure</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of maximum parallel lines</td>
<td>uniform random numbers</td>
<td>1～10</td>
</tr>
<tr>
<td>Link travel time</td>
<td>uniform random numbers</td>
<td>8～12</td>
</tr>
<tr>
<td>Link frequency</td>
<td>uniform random numbers</td>
<td>5～20</td>
</tr>
<tr>
<td>OD pair</td>
<td>uniform random numbers</td>
<td>50 pair</td>
</tr>
<tr>
<td>Walking link</td>
<td>Generate a random rate of 10% in the case of number of parallel line at 1</td>
<td></td>
</tr>
</tbody>
</table>
Example of convergence of MSA algorithm:

- The algorithm seems to be well converged.
 ⇒ The model has reached convergence in equilibrium.
4. Effects of parallelization

Effect of parallelization:

- The parallelization significantly decreased runtime.
 - Difference in compiler brought 1.99 times and difference in compiler option brought 2.13 times difference in computational speeds.
 - However, “Depletion Effect (Amdahl, 1967)” became distinct with the increase in the number of CPUs.
5. Application to Tokyo’s railway network

• Network data

1. **Nodes & links**: 2005 Tokyo metropolitan transportation census*
2. **Link flow & OD**: 2005 Tokyo metropolitan transportation census

Tokyo metropolitan census is an authorized survey for every 5 year. It corrects railway users’ daily travel behavior (e.g. departure time, origin-destination & route)
3. **Link travel time**: Railway timetable in TMA
4. **Frequency (each line segment)**: Railway timetable in TMA
5. **Train vehicle capacity**: 120(parson/vehicle) * unit (number of vehicle)

Convert these data into the hypergraph representation
5. Line segmentation

Many lines operate the same lines but with different origin and destination stations and have several types of operations (e.g. Local train, Express train, Mutual direct...)

Ex.) Saikyo line (one of the longest north-south corridor line with mutual operation)

```
<table>
<thead>
<tr>
<th>Kawagoe-line</th>
<th>Saikyo-line</th>
<th>Rinkai-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

“Saikyo line has 3 types segment

Saikyo-Kawagoe line has 2 segment

Saikyo-Rinkai line has 2 segment

Among mutual direct line has 4 segment

Input network data is increase by mutual direct and different OD stations
5. Tokyo’s railway network

• Specification:

 Physical network:
 - Lines: 124
 - Line Segments: 837
 - Stations: 1416
 - Links: 40701

 Hypergraph representation:
 - Nodes: 29902
 - Links: 55972

• Calculation environment:
 - C++ with Open MP library
 - “TSUBAME2.0” (64CPUs available)
5. Calibration of model parameters

- Numbers of parameters ω and ψ are set based on the calibration which tries to fit the data with its prediction through trial and error repetitions.
- Numbers of other parameters are the same with the previous literature on transit assignment in the TMA (Kato et al. 2007; Iwakura et al. 2000).

Generalized cost function:

$$g_p = \phi \sum_{a \in L_p \setminus D_p} \alpha_{a_p} t_a + \omega \sum_{a \in L_p} \alpha_{a_p} t_a + \varphi \sum_{i \in L_p} \beta_{ip} + \xi \sum_{a \in L_p} \alpha_{a_p} CDU_a,$$

Effective frequency:

$$f_{l(a)}^e = \frac{1}{w_{l(a)}} = \left[\frac{\beta_{ip}}{F_{ip}} + \rho \left(\frac{x_a}{Cap_{l(a)}} \right)^\kappa \right]^{-1},$$

Congestion disutility:

$$CDU_a = t_a \left(\frac{x_a}{Cap_{l(a)}} \right)^\psi.$$

<table>
<thead>
<tr>
<th>Φ</th>
<th>φ</th>
<th>ζ</th>
<th>ω</th>
<th>ρ</th>
<th>κ</th>
<th>Ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.45*</td>
<td>2.07*</td>
<td>1.20</td>
<td>1.06*</td>
<td>2.21*</td>
<td>2.50</td>
</tr>
</tbody>
</table>

* indicates parameters taken from Kato et al. (2007) and Iwakura et al. (2000)
5. Results of overlapping section (example)

- Shonan-Shinjuku line
- Keihin-Tohoku line
- Utsunomiya line
- Yamanote line
- Takasaki line

Saitama Pref.

Inner Yamanote line

(1) Omiya
(2) Akabane
(3) Ueno
(4) Tokyo
4. Goodness-of-fit of the Models (with 412 observed link flows)

Without congestion effects:

\[R^2 = 0.856 \]

With congestion effects:

\[R^2 = 0.951 \]

- Congestion effects would be crucial for Tokyo network.
- However, in some links even with congestion, the traffic volume is underestimated or overestimated.
4. Effects of parallelization

- Again, the parallelization decreased runtime significantly.

- Parallelization of hyperpath search enabled to reduce the runtime significantly for large-scale applications.

- However, “Depletion effect” becomes distinct with the increase in the number of processors.
6. Conclusions & Future Works

Conclusions:

- We proposed a frequency-based railway route assignment model with two different congestion effects (in-vehicle and on-railroad) and applied this to the TMA rail network.
- The model improved the goodness of fit compared with the one without congestion effects.
- Parallelization of hyperpath search enabled to reduce the run time significantly for large-scale applications.

Future works:

- Consider the transfer behavior between platforms.
- Introduce the railway fare to generalized cost function.
- Further *speed-up* with the improvement of parallelization code and parameter fitting compatible.
Thank you for your kind attention.