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Abstract 

The presence of outliers in the data has serious implications for stochastic frontier analysis 

because they may distort parameter estimates and, crucially, lead to an exaggerated spread of 

efficiency predictions. One way of increasing the robustness of the model to outliers is to alter 

the distributional assumptions about the two-sided error component so that it allows for thick 

tails. Several existing proposals specify thick tailed distributions for both error components in 

order to arrive at a closed form log-likelihood function, limiting the analyst’s choice of 

efficiency distribution. Stead et al. (2017) demonstrate that simulation methods may be used to 

pair a logistically distributed noise term with any of the canonical efficiency distributions, and 

that a far narrower range of efficiency predictions is obtained by doing so. We extend this idea 

by proposing a Student’s t distribution for the noise term, which generalises the normal 

distribution by adding a shape parameter governing the degree of kurtosis, therefore having the 

advantages of greater flexibility in the thickness of the tails and of nesting the normal 

distribution. We estimate a Student’s t-half normal cost frontier for highways authorities in 

England and find that the model yields a significantly narrower range of efficiency predictions. 

We examine testing against the standard stochastic frontier model. 
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1. Introduction 

Frontier analysis is concerned with the measurement of efficiency relative to an estimated 

production or cost frontier. The presence of noise in the sample is problematic in two ways: it 

affects the position of each decision making unit (DMU) relative to the frontier, and it affects 

the shape of the frontier itself. The magnitudes of these effects vary from one method to 

another: deterministic methods, such as data envelopment analysis (DEA) (Charnes et al., 

1978) and corrected ordinary least squares (COLS) are particularly sensitive, given that they 

make no allowance for noise. In contrast, Stochastic Frontier (SF) Analysis explicitly controls 

for noise, mitigating its impact on the estimated frontier and on individual efficiency scores.  

The range of efficiency scores can still be very large in the presence of data with outlying 

observations. The specific motivation for this study is the authors’ finding of an implausibly 

wide range of efficiency scores in our work studying cost drivers and cost efficiency in the 

highways maintenance operations of local authorities in England, which utilises data on 

operating and capital expenditure provided by each authority. This can be narrowly explained 

as being due to a combination of under-reporting and over-reporting of expenditure, 

unobserved investment cycle effects, and extreme weather events. However we also came 

across this issue in a number of other data sets, and a casual look at the empirical SF literature 

seems to indicate that the ranges of individual efficiency predictions are sometimes difficult to 

reconcile with a priori expectations.  

In this paper we consider methods of dealing with outliers in the context of SFA. After 

consideration of possible existing approaches, we propose a new stochastic frontier model with 

a Student’s t distribution for the noise term. The advantages of this model over previous 

proposals lie in its flexibility, since the degree of kurtosis is no longer fixed but allowed to vary 

with the degrees of freedom parameter, and in the fact that the Student’s t distribution nests the 
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normal distribution as the degrees of freedom parameter approaches infinity. For any given 

distribution of 𝑢, our model nests the standard SF model. This enables testing against the 

standard model, in contrast to previous proposals which utilise non-nested specifications. 

The structure of this paper is as follows: Section 2 looks at existing methods available to handle 

a large number of outliers is frontier analysis, and reviews the relevant literature, Section 3 

introduces t-truncated normal and t-gamma stochastic frontier models for dealing with heavy-

tailed noise and discusses efficiency prediction and hypothesis testing, Section 4 applies the 

Student’s t-half normal model to data on highways maintenance costs in England and compares 

the results to those obtained from normal-half normal model, and Section 5 gives our summary 

and conclusions.  Some technical results appear in an Appendix. 

2. Literature Review: Approaches to Outliers in SFA 

Our focus is on possible existing approaches to dealing with outliers in the context of SFA. We 

start by looking at ad-hoc solutions using methods not specifically developed for this purpose 

but having some potential to mitigate one or more of the symptoms, e.g. by reducing the spread 

of efficiency scores. These generally have limited usefulness in dealing with outliers and 

involve a degree of arbitrariness. We then move on to discuss methods more appropriate to 

dealing with the root cause of these symptoms, the presence of outliers in the data. As in linear 

modelling generally, these essentially revolve around the detection and removal of outliers or 

the adoption of alternative distributional assumptions about the noise term. 

The standard SF model, as developed by Aigner et al. (1977) and Meeusen and van Den Broeck 

(1977), is as follows: 

 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝜀𝑖, 𝜀𝑖 = 𝑣𝑖 − 𝑠𝑢𝑖 ( 1 ) 
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Where the subscript 𝑖 denotes the observation, 𝑦 is the dependent variable, 𝑥 is a vector of 

independent variables, and 𝜀 is an error term with two components. The noise component, 𝑣, 

follows a symmetric distribution centred at zero, and the inefficiency component, 𝑢, is drawn 

from a one-sided distribution, and in the production case 𝑠 = 1, while in the cost case 𝑠 = −1. 

Many alternative distributions have been proposed for 𝑢, for example the half normal or 

exponential (Aigner et al., 1977), truncated normal (Stevenson, 1980), or gamma (Greene, 

2003) distributions. In comparison, 𝑣 is almost always assumed to follow a normal distribution, 

although both distributional assumptions are crucial with regards to the both the robustness of 

the parameter estimates to outliers and the decomposition of the estimated residual into noise 

and inefficiency. 

Concerning robustness to outliers, it is worth pointing out that one of the original motivations 

behind SFA as an alternative to OLS—which after all yields unbiased estimates of the frontier 

parameters apart from the intercept—was to obtain estimates that are more robust to skewness 

of the residuals caused by inefficiency. Indeed it was not until the Jondrow et al. (1982) paper 

that a method of obtaining observation-specific predictions of efficiency was introduced. On 

the decomposition of the residuals, obtaining these observation-specific efficiency scores 

proceeds by making some prediction of 𝑢 based on the conditional distribution of 𝑢𝑖|𝜀𝑖. 

Dropping the subscript i, this is given by 

 
𝑓(𝑢|𝜀) =

𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)
 

( 2 ) 

where 𝑓𝑣 and 𝑓𝑢 are the probability density functions of 𝑣 and 𝑢 respectively, and 𝑓𝜀 is the 

probability density function of the composed error derived as the convolution of the two error 

components. The usual approach to efficiency prediction is to use the mean of this distribution 

according to exp[−𝐸(𝑢|𝜀)] (Jondrow et al., 1982) or 𝐸[exp(−𝑢|𝜀)] (Battese and Coelli, 1988). 
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Clearly, any efficiency prediction derived in this way will depend upon the distribution not 

only of 𝑢 but also of 𝑣: Wang and Schmidt (2009) derive the distribution of 𝐸(𝑢|𝜀) in the 

normal-half normal case, and show that it approaches 𝑓𝑢(𝑢) only as 𝑉𝐴𝑅(𝑣) → 0, and 𝐸(𝑢) as 

𝑉𝐴𝑅(𝑣) → ∞. The conditional mean predictor is therefore a shrinkage of 𝑢 towards its mean 

with the degree of shrinkage depending upon the distribution of 𝑣. 

Given that the presence of outliers, where these are attributed to noise rather than inefficiency, 

implies a leptokurtic—i.e. thick tailed—noise distribution, the normal distribution usually 

assumed for 𝑣 is inappropriate since it is mesokurtic—i.e. neither thin or thick tailed—for any 

given parameter values. Intuitively, we would therefore expect outliers in the data to result in 

an exaggerated spread of efficiency scores for two reasons: first, because of an inflated estimate 

of the scale of the distribution of 𝑢, and second because of insufficient shrinkage of 𝑢 towards 

its mean, especially at the extremes. That is to say, if leptokurtosis in the noise term due to 

outliers is not taken into account, residuals will be attributed disproportionately to inefficiency 

rather than noise, particularly in outlying observations. This motivates the development of 

alternative SF models that can accommodate outliers. 

2.1. Alternative Efficiency Distributions and Predictors 

Given an apparently implausible distribution of efficiency predictions, an obvious option is to 

adopt an alternative assumption about the distribution of inefficiency. For example, adopting 

an inefficiency distribution with thinner tails—or perhaps a truncation of the tail, as proposed 

by Lee (1996), Almanidis et al. (2014) and others—should intuitively result in a narrower 

spread of efficiency predictions by attributing outliers to noise to a greater extent. Clearly, 

however, if the real problem is outliers in the data, then the effectiveness of this solution will 

be limited since there will be not enough shrinkage at the tails. Nor does this workaround 
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address the problem of imprecise parameter estimation, and if anything we may be driven to 

estimate a model in which both the inefficiency and noise distributions are inappropriate. 

An even more arbitrary approach would be to adopt an alternative efficiency predictor post-

estimation. The two alternatives proposed by Jondrow et al. (1982) are the mean and mode of 

the distribution of 𝑢|𝜀, with the former the most commonly used in the applied literature. When 

the distribution of 𝑢 is skewed in the expected direction—i.e. positively in the cost case and 

negatively in the production case—the conditional mode predictor yields predictions of 

efficiency  that are higher for the most efficient DMUs, but practically the same for the most 

inefficient DMUs. There is therefore a trade-off with the conditional mode predictor, between 

obtaining what might appear to be more reasonable efficiency predictions for the most efficient 

firms via the conditional mode predictor, and expanding the range of efficiency predictions to 

be even more unreasonable. Adopting alternative predictors therefore does not seem to be a 

satisfactory solution. 

Another approach would be to qualify the point predictions of efficiency with prediction 

intervals: Horrace and Schmidt (1996) and Bera and Sharma (1999) propose using the quantile 

function for the distribution of 𝑢|𝜀. However Wheat et al. (2014) note that this does not 

necessarily yield minimum a width interval, which they derive for the normal-half normal 

model. When the estimated scale of the inefficiency distribution is inflated by outliers, the 

distribution of 𝑢|𝜀 will have a high variance, and therefore the range of probable values will 

be wide. However, this really just serves to highlight the problem, and of course the prediction 

interval will include values even less plausible than the point prediction. A better solution 

would therefore to be to obtain a better estimate of the scale of the distribution of 𝑢|𝜀 by taking 

outliers into account. 
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2.2. Heteroskedastic SF Models 

Outliers may be thought of as a result of heteroskedasticity in one or both error components, 

with a small proportion of errors having higher variance. Therefore one way of mitigating the 

impact of outliers is to allow for heteroskedasticity. A number of heteroskedastic SF models 

have been introduced, although these have tended to focus on heteroskedasticity in 𝑢: the 

general approach is to modify the standard SF specification so that the variance or standard 

deviation of 𝑢 is modelled as a function of a vector of covariates, as proposed by Reifschneider 

and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995). 

Clearly, however, we would not want outliers to be picked up as heteroskedasticity in 𝑢, since 

the estimated variance of 𝑢 for outlying observations would still be inflated. The application 

of these models is usually to capture the relationship between a set of covariates and efficiency, 

similar to the Battese and Coelli (1995) specification in which they enter the pre-truncation 

mean of a truncated normal inefficiency distribution; Wang (2002) combines these two 

approaches. Rather, we want to allow for heteroskedasticity in 𝑣: Hadri (1999) generalised the 

Caudill et al. (1995) heteroskedastic stochastic frontier model by allowing for 

heteroskedasticity in both error components. It would be straightforward, therefore, to estimate 

a model with heteroskedasticity in 𝑣. 

In general, however, the difficulty with using heteroskedastic SF models to control for the 

presence of outliers is that this would require an appropriate indicator variable for identifying 

outlying observations, which would have to be identified either on some arbitrary ex-post basis, 

or on the basis of established techniques for the detection of outliers, in which case it may be 

better to simply exclude the observations. 
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2.3. Outlier Detection and Removal 

In general, one simple approach to outliers is to exclude them from the analysis. This, however, 

requires that appropriate criteria are used to identify which observations are outlying and 

therefore candidates for removal. Many competing criteria exist. One approach is to exclude 

observations that have a disproportionate effect on parameter estimates.  In the context of OLS, 

Cook (1977) proposed a measure of the influence of an individual observation on the parameter 

estimates, known as Cook’s distance. A similar measure sometimes used for the same purpose 

is the Mahalanobis distance (Mahalanobis, 1936). However, while these measures provide an 

indication of the influence of an observation, the cut-off beyond which an observation should 

be removed is arbitrary and involves uncertainty which is not reflected in subsequent 

modelling. 

The biggest drawback of these methods in the current context, however, is that they may not 

be appropriate in the case of skewness of the composed error. Cook’s Distance explicitly 

assumes normally distributed errors, while in SFA the distribution of the composed error 

depends upon the distribution of 𝑣 and 𝑢: in the normal-half normal case, the composed error 

has a skew normal distribution (Azzalini, 1985), and in the normal-exponential case it follows 

what is known as an exponentially modified Gaussian distribution (Grushka, 1972), for 

example. As such, these distributions are more robust to outliers in one direction than the other, 

and the derivation of some analogous measure of leverage taking this into account would 

inevitably be bound up with one’s distributional assumptions. 

2.4. Alternative Noise Distributions 

Another potential method of dealing with outliers is to change the distributional assumptions 

about the error term such that the model is more robust to the existence of outliers. As discussed 



9 

 

in Section 2.1, we should change the distributions of 𝑣 specifically, rather than 𝑢. In principle, 

any distribution that is symmetric, centred around zero and unimodal is an appropriate 

candidate for the distribution of 𝑣, and although far more attention has been paid in the 

literature to the distribution of 𝑢, several such alternatives have been suggested. 

Outside of the SF literature, Lange et al. (1989) suggest the use of the Student’s t distribution 

for the error terms as a robust alternative to OLS. Lange and Sinsheimer (1993) discuss 

estimation when errors are drawn from the logistic, slash, t, and contaminated normal 

distributions: note that the latter is simply the mixture of two normal distributions as described 

in Section 2.2. All of these distributions have heavier tails than the normal distribution, and 

therefore offer greater robustness to outliers. 

In the context of SFA, Tancredi (2002) proposes a model in which 𝑣 is drawn from a t 

distribution and 𝑢 from a half t distribution—i.e. the left truncation of a Student’s t distribution 

at zero—resulting in a skew t distribution for the composed error, and shows that the 

distribution of 𝑢|𝜀 becomes flat as 𝑠𝜀 → ∞ and therefore the uncertainty associated with 

efficiency predictions increases. In contrast, as 𝑠𝜀 → ∞ in the normal-half normal case the 

distribution of 𝑢|𝜀 becomes concentrated around zero, implying full efficiency; the t-half t 

model therefore deals with outliers in a more satisfactory way. The author also notes that, since 

the t distribution approaches the normal distribution as the degrees of freedom parameter 

approaches infinity, the model nests the normal-half normal model. The model is applied to the 

Christensen and Greene (1976) data set on US electric utilities, and 𝐸[exp(−𝑢|𝜀)] and 

𝑉𝐴𝑅[exp(−𝑢|𝜀)] are compared to those from the normal-half normal model.  These are shown 

to behave very differently, with the efficiency predictions from the t-half t model having a 

smaller range and being nonlinear in relation to 𝑠𝜀, declining for large values of 𝑠𝜀 as the 
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variance of the distribution of 𝑢|𝜀 increases in line with the author’s findings on the limiting 

distribution. Tchumtchoua and Dey (2007) study the t-half t model in a Bayesian setting. 

Nguyen (2010) introduces two additional alternative heavy tailed distributions for 𝑣: the 

Laplace distribution and the Cauchy distribution: the latter is paired with both half Cauchy and 

truncated Cauchy distributions—i.e. the left truncation at zero of a Cauchy distribution with 

means at zero and freely estimated, respectively—while the former is paired with an 

exponential distribution for 𝑢. The Cauchy distribution is potentially problematic since its 

mean, variance and higher order moments are undefined. This is also the case for the skew 

Cauchy distribution (Arnold and Beaver, 2000), for which only fractional moments exist. 

Despite this, the author is able to derive exp[−𝐸(𝑢|𝜀)] for the Cauchy-truncated Cauchy and 

Cauchy-half Cauchy models and applications are shown in Gupta and Nguyen (2010). 

The Laplace distribution also presents possible issues, given that it has a cusp at the mean and 

hence a non-differentiable point in the likelihood function. Standard results for consistency and 

asymptotic normality of maximum likelihood (ML) estimates do not apply. The usefulness of 

the Laplace-exponential model derived by Nguyen (2010) is also limited by simplifying 

assumptions the author makes in its derivation, specifically that the scale parameters for 𝑣 and 

𝑢 in the Laplace-exponential model are the same. Nevertheless, Horrace and Parmeter (2015) 

derive Laplace-truncated Laplace and Laplace-exponential SF models without such restrictions  

(The left truncation of a Laplace distribution at or above zero results in an exponential 

distribution). The authors show that when the variance in 𝑢 is zero, the estimator of the model 

reduces to the least absolute deviations (LAD) estimator. That a regression with Laplace errors 

minimises absolute deviations has previously been noted by Keynes (1911). The distribution 

of 𝑢|𝜀, and hence any efficiency prediction, is constant for positive values of 𝑠𝜀. 
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The models above each perform better than the standard SF model in the presence of outliers 

because of their use of heavy tailed distributions of 𝑣. However, in addition to the specific 

issues identified above, a drawback of each of the models is that they assume that the 

distribution of 𝑢 is a left truncation of the distribution of 𝑣, since this makes it possible to derive 

a closed form expression for the log-likelihood – see Proposition 9 of Azzalini and Capitanio 

(2003), which gives the density function for sum of one random variable and the absolute value 

of another random variable when both random variables follow the same elliptical distribution. 

While simplifying derivation and estimation of the model, this limits comparability to the 

standard SF model.  A preferable approach would be to combine a heavy tailed distribution of 

𝑣 with any of the canonical distributions for 𝑢, e.g. half normal or exponential. 

This shortcoming is addressed by Stead et al. (2017), who propose a model in which 𝑣 follows 

a logistic distribution and 𝑢 follows, e.g. a half normal or exponential distribution. They 

estimate a logistic-half normal SF model using maximum simulated likelihood and data on 

English local authorities’ road maintenance costs. The authors show that the model results in a 

smaller estimate for 𝑉𝐴𝑅(𝑢) and yields a considerably narrower spread of efficiency scores 

than the normal-half normal model, with little change in exp[𝐸(−𝑢|𝜀)] for large |𝑠𝜀|; the 

model is therefore better at handling outliers at either end than the standard SF model. 

A remaining issue is the arbitrary assumptions on the degree of kurtosis in 𝑣 embedded in most 

of the above models—and therefore the extent to which there are outliers in the data—since 

the logistic and Cauchy distributions have excess kurtosis of 1.2 and 3 respectively, regardless 

of parameter values; likewise, though kurtosis is undefined for the Cauchy distribution, its 

shape does not depend upon parameter values. If the assumed distribution of 𝑣 has heavier 

(lighter) tails than the true distribution, this will result in an underestimate (overestimate) of 
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the scale of 𝑢 and excessive (insufficient) shrinkage of 𝑢 according to 𝐸[exp(−𝑢|𝜀)] at the 

tails. 

Ultimately, the kurtosis of 𝑣 is an empirical question, and therefore we should ideally use a 

distribution for 𝑣 for which kurtosis is flexible. Of the alternatives discussed above, the 

Student’s t distribution, in which kurtosis depends upon the degrees of freedom parameter is 

ideal in this regard. A further advantage of the t distribution is that it nests the Cauchy 

distribution when the degrees of freedom parameter is equal to one and the normal distribution 

as it approaches infinity. By extension, an SF model with a t distribution for 𝑣 nests a model in 

which 𝑣 follows a Cauchy or normal distribution for any given distribution of 𝑢. This enables 

testing against these alternatives; in the latter case, we are testing against the standard SF 

model, which could be interpreted as a test of robustness to outliers. 

Following the discussion above, we propose a robust SF model in which 𝑣 follows a Student’s 

t distribution and 𝑢 follows some one-sided distribution, e.g. half normal or exponential. In 

many cases, this will result in a log-likelihood function with no closed form solution. Griffin 

and Steel (2007) briefly discuss how to estimate t-half normal, t-exponential, and t-gamma 

Bayesian SFA models using the WinBUGS software package—which uses Markov Chain 

Monte Carlo (MCMC) methods for numerical integration—and apply these to the Christensen 

and Greene (1976) electricity data set. But the model remains unexplored in the classical 

framework.  We propose the use of simulation methods, as used by Greene (2003) to implement 

the normal-gamma model, to solve the convolution of the Student’s t distribution and the 

distribution of 𝑣 and arrive at a simulated likelihood function. 

At this point it is worth mentioning a recent proposal by Hofler (2014) with a similar motivation 

and using similar techniques, to pair a generalised normal distribution for 𝑣 with a half-normal 
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distribution for 𝑢. The generalised normal distribution, introduced by Nadarajah (2005), is 

similar to the Student’s t distribution in that it has a kurtosis parameter and nests the normal 

distribution. However, unlike the Student’s t, the generalised normal distribution can be either 

leptokurtic or platykurtic when its shape parameter is lower than or greater than two, 

respectively; in principle, an SF model with a generalised normal distribution for 𝑣 can 

therefore account not only for heavy tails but also for the converse problem of light tails, 

making it an attractive choice. When the kurtosis parameter is equal to one, the generalised 

normal distribution also nests the Laplace distribution. 

However, the generalised normal distribution has several properties which hinder maximum 

likelihood estimation: as the thickness of the tails increases—i.e. the kurtosis parameter goes 

below two—the distribution acquires a cusp at the mean and as a consequence has an infinite 

number of continuous derivatives only when the kurtosis parameter is a positive, even integer. 

Otherwise, the number of derivatives is equal to the largest integer less than or equal to the 

kurtosis parameter. As a consequence the standard results for consistency and asymptotic 

normality of ML estimates only apply when the kurtosis parameter is greater than or equal to 

two. When the kurtosis parameter is greater than two—i.e. the distribution is thin tailed—the 

distribution has only finite support. We conclude that the primary advantage of using a 

generalised normal distribution for 𝑣 rather than a Student’s t distribution, the ability to account 

for thin tails in the noise term, is more than outweighed by these issues. It is difficult to imagine 

what might give rise to light tails in practice. To the best of our knowledge, the generalised 

normal-half normal model has not yet been implemented.  

The following section shows the derivation of an SF model with a Student’s t distribution for 

𝑣: we focus on the t-truncated normal and t-gamma models—which nest the t-half normal and 

t-exponential models—though extension to other distributions for 𝑢 is straightforward. 
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3. The t-Truncated Normal and t-Gamma SF Models 

In this section we derive simulated log likelihood functions and efficiency predictors for the t-

truncated normal and t-gamma SF models, and discuss estimation and hypothesis testing. 

Results for the t-half normal and t-exponential models can be obtained via some simple 

restrictions. Extensions to other distributions of 𝑢 are shown to be straightforward if the 

quantile function of that distribution has a closed form, while in many other cases—as with the 

t-gamma—the simulated log likelihood function becomes slightly more complex.  

3.1. Formulation and Estimation 

In SFA, the error 𝜀 is composed of a symmetric noise component 𝑣 and an inefficiency 

component 𝑢 which is drawn from a one-sided distribution: 

 𝜀 = 𝑣 − 𝑠𝑢 ( 3 ) 

where 𝑠 = 1 in for a production frontier and 𝑠 = −1 for a cost frontier. In this study, we assume 

that 𝑣 is drawn from a non-standard t distribution—which includes a scale parameter 𝜎𝑣—and 

that 𝑣 is from a truncated-normal or gamma distribution. For now we shall assume the former, 

so that the probability density functions 𝑓𝑣 and 𝑓𝑢 are given by 

 

𝑓𝑣(𝑣) =
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝑣

𝜎𝑣
)
2

]

−
𝑎+1
2

 

( 4 ) 

 

𝑓𝑢(𝑢) =

{
 
 

 
 
1
𝜎𝑢
𝜙 (
𝑢 − 𝜇
𝜎𝑢

)

Φ (
𝜇
𝜎𝑢
)

, 𝑠𝑢 > 0

0,                                𝑠𝑢 ≤ 0

 

( 5 ) 
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where 𝜇 and 𝜎𝑢 are the mean and standard deviation of the pre-truncation distribution of 𝑢, 

respectively, 𝑎 is a shape parameter that determines the kurtosis of the 𝑡 distribution, and Γ is 

the gamma function. As noted previously, as 𝑎 → ∞ the 𝑡 approaches the normal distribution. 

Thus, our models nest the normal-truncated normal and normal-gamma models. Similarly, 

when 𝑎 = 1 we have a Cauchy distributed noise component. The joint density of 𝜀 and 𝑢 is 

given by 

 

𝑓𝑢,𝜀(𝑢, 𝜀) =

{
 
 

 
 Γ(

𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝜀 + 𝑠𝑢

𝜎𝑢
)
2

]

−
𝑎+1
2
1
𝜎𝑢
𝜙 (
𝑢 − 𝜇
𝜎𝑢

)

Φ (
𝜇
𝜎𝑢
)

, 𝑠𝑢 > 0

0,                                                                                                      𝑠𝑢 ≤ 0

 ( 6 ) 

The marginal density of 𝜀 is given by the convolution 

 

𝑓𝜀(𝜀) = ∫
Γ(
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝜀 + 𝑠𝑢

𝜎𝑣
)
2

]

−
𝑎+1
2
1
𝜎𝑢
𝜙 (
𝑢 − 𝜇
𝜎𝑢

)

Φ (
𝜇
𝜎𝑢
)

𝑑𝑢
∞

0

 ( 7 ) 

This is an integral with no closed form, meaning that it is not possible to give an analytic 

expression for the log-likelihood function. One solution to this problem is to use simulation to 

approximate the integral and arrive at a simulated log likelihood function—see Train (2003) 

for an introduction to maximum simulated likelihood—as proposed by Greene (2003) for the 

normal-gamma model and Stead et al. (2017) for the logistic-half normal model. We begin by 

noting that ( 7 ) is the expectation of 𝑓𝑣(𝜀 + 𝑠𝑢) where 𝑢 is drawn from a truncated-normal 

distribution 

 ℎ(𝑢) = 𝐸[𝑓𝑣(𝜀 + 𝑠𝑢)|𝑢 ≥ 0], 𝑢~𝑁(𝜇, 𝜎𝑢) ( 8 ) 

That can be estimated by 
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ℎ̂ =
1

𝑄
∑𝑓𝑣(𝜀 + 𝑠𝑢𝑞)

𝑄

𝑞=1

 ( 9 ) 

where 𝑢𝑞 is a draw from a truncated-normal distribution. This gives us a simulated probability 

density function for 𝜀 

 

𝑓𝜀(𝜀) =
1

𝑄

Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

∑[1 +
1

𝑎
(
𝜀 + 𝑠𝑢𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄

𝑞=1

 ( 10 ) 

The simulated log-likelihood function is 

 
ln 𝑆𝐿 = −𝑁 ln𝑄 + 𝑁 ln [Γ (

𝑎 + 1

2
)] − 𝑁 ln [Γ (

𝑎

2
)] 

−
𝑁

2
[ln 𝜋 + ln 𝑎] − 𝑁 ln𝜎𝑣 +∑ln∑[1 +

1

𝑎
(
𝜀 + 𝑠𝑢𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄

𝑞=1

𝑁

𝑖=1

 

( 11 ) 

This may be maximised like any conventional log-likelihood function, provided we have our 

draws from the truncated normal distribution. The usual method of taking draws from a non-

uniform distribution is to note that the cumulative density function of a random variable follows 

a uniform distribution, and therefore the inverse cumulative density function, i.e. the quantile 

function, gives the value of a random variable as a function of a uniformly distributed random 

variable. We can therefore transform draws from the uniform distribution into draws from any 

given distribution using the quantile function of that distribution. From Geweke et al. (1997) 

and Greene (2003), we have the quantile function of a truncated normal random variable: 

 
𝑢𝑖𝑞 = 𝜇 + 𝜎𝑢Φ

−1 {[Φ (
𝑡𝑟 − 𝜇

𝜎𝑢
) − Φ(

𝑡𝑙 − 𝜇

𝜎𝑢
)] 𝐹𝑖 +Φ(

𝑡𝑙 − 𝜇

𝜎𝑢
)} ( 12 ) 
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Where 𝑡𝑙 and 𝑡𝑟 are the left and right truncation points, respectively. Since we know that 𝑡𝑙 =

0, 𝑡𝑟 = ∞, this simplifies to 

 
𝑢𝑖𝑞 = 𝜇 + 𝜎𝑢Φ

−1 [1 + Φ(
𝜇

𝜎𝑢
) (𝐹𝑖𝑞 − 1)] ( 13 ) 

At this point, it is useful to note that in order to modify the model so that the one-sided error 

follows some other distribution, we need only change 𝑢𝑖𝑞 such that we instead obtain draws 

from the chosen distribution. The most obvious choices are the exponential and gamma 

distributions, which are the most widely used one-sided error distributions in SFA after the half 

normal and truncated normal. For the t-exponential case, we have the quantile function 

 𝑢𝑖𝑞 = −𝜎𝑢 ln 𝐹𝑖𝑞 ( 14 ) 

And by substituting these into ( 12 ), we have the log-likelihood function for the t-truncated-

normal and t-exponential models. Other proposed distributions for 𝑢, such as the Weibull 

(Tsionas, 2007) and Rayleigh (Hajargasht, 2015) distributions also have closed form quantile 

functions which can likewise substituted into ( 12 ). The t-gamma case is less straightforward 

in this respect, since there is no analytical expression for the inverse cumulative density 

function. One way to proceed, however, is to note that the convolution of a t distributed 𝑣 and 

a gamma distributed 𝑢 is with shape parameter 𝑏 and scale parameter 𝜎𝑢 is 

 

𝑓𝜀(𝜀) = ∫
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝜀 + 𝑠𝑢

𝜎𝑣
)
2

]

−
𝑎+1
2 𝑢𝑏−1𝑒

−
𝑢
𝜎𝑢

Γ(𝑏)𝜎𝑢
𝑏 𝑑𝑢

∞

0

 ( 15 ) 

which is the expectation of 𝑓𝑣(𝜀 + 𝑠𝑢)(𝑢 𝜎𝑢⁄ )𝑏−1 Γ(𝑏)⁄  where 𝑢 is drawn from an exponential 

distribution: 
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ℎ(𝑢) = 𝐸 [

𝑓𝑣(𝜀 + 𝑠𝑢)

Γ(𝑏)
(
𝑢

𝜎𝑢
)
𝑏−1

| 𝑢 ≥ 0] , 𝑢~Exponential(𝜎𝑢) ( 16 ) 

Following the reasoning above, therefore, we arrive at the simulated probability density 

function for 𝜀: 

 

𝑓𝜀(𝜀) =
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2) Γ

(𝑏)√𝜋𝑎𝜎𝑣

1

𝑄
∑(− ln 𝐹𝑖𝑞)

𝑏−1
[1 +

1

𝑎
(
𝜀 − s𝜎𝑢 ln 𝐹𝑖𝑞

𝜎𝑣
)

2

]

−
𝑎+1
2

𝑄

𝑞=1

 ( 17 ) 

The simulated log-likelihood function is 

ln 𝑆𝐿 = −𝑁 ln𝑄 + 𝑁 ln Γ (
𝑎 + 1

2
) − 𝑁 ln Γ (

𝑎

2
) − 𝑁 ln Γ(𝑏) − 𝑁 ln𝜎𝑣 

−
𝑁

2
[ln 𝜋 + ln 𝑎] +∑ln∑(− ln 𝐹𝑖𝑞)

𝑏−1
[1 +

1

𝑎
(
𝜀 − 𝜎𝑢 ln 𝐹𝑖𝑞

𝜎𝑣
)

2

]

−
𝑎+1
2

𝑄

𝑞=1

𝑁

𝑖=1

 

( 18 ) 

We now have simulated log-likelihood functions for the t-truncated normal and t-gamma SFA 

models, and therefore also for their familiar restrictions, the t-half normal (when 𝜇 = 0) and t-

exponential (when 𝑏 = 1), respectively. First order conditions for maximisation in both models 

are given in the Appendix. One remaining issue is the method of taking random draws: we 

prefer to use Halton draws, which aim for good coverage of the unit interval rather than 

randomness, as opposed to random draws: this significantly reduces the number of draws 

needed to approximate the integral (see Greene (2003) for a fuller discussion). 

3.2.  Efficiency Prediction 

As discussed in previous sections, the usual approach to generating observation-specific 

efficiency scores is to predict values based on the distribution of 𝑢|𝜀, which is given by: 
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𝑓(𝑢|𝜀) =

𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)
 ( 19 ) 

The most widely used predictors are the mean of this conditional distribution according to 

exp[−𝐸(𝑢|𝜀)]: 

 
exp[−𝐸(𝑢|𝜀)] = exp [−∫ 𝑢

𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)
𝑑𝑢

∞

0

] ( 20 ) 

Or 𝐸[−exp(𝑢|𝜀)]: 

 
𝐸[exp(−𝑢|𝜀)] = ∫ exp(−𝑢)

𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)
𝑑𝑢

∞

0

 ( 21 ) 

Note that in both cases, since 𝑓𝜀(𝜀) is not a function of 𝑢, it can be moved outside the integral. 

Bearing in mind that 𝑓𝜀(𝜀) is the convolution of 𝑓𝑣(𝜀 + 𝑠𝑢) and 𝑓𝑢(𝑢), we therefore have 

 
exp[−𝐸(𝑢|𝜀)] = exp [−

∫ 𝑢𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)𝑑𝑢
∞

0

∫ 𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)𝑑𝑢
∞

0

] ( 22 ) 

 
𝐸[exp(−𝑢|𝜀)] =

∫ exp(−𝑢)𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)𝑑𝑢
∞

0

∫ 𝑓𝑣(𝜀 + 𝑠𝑢)𝑓𝑢(𝑢)𝑑𝑢
∞

0

 ( 23 ) 

Again, for the models we are considering, none of these integrals have closed form solutions, 

so we approximate them via simulation. The simulated integral in the denominators of both 

formulae are given by ( 10 ), and the integrals in the numerators are the expectations of 

𝑢𝑓𝑣(𝜀 + 𝑠𝑢) and exp(−𝑢) 𝑓𝑣(𝜀 + 𝑠𝑢) given that 𝑢 is a random variable with the probability 

density function 𝑓𝑢(𝑢). We therefore have, with some simplifying and rearranging: 
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exp[−𝐸(𝑢|𝜀)] = exp

[
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 ( 24 ) 

 

𝐸[exp(−𝑢|𝜀)] =

∑ exp(−𝑢𝑞) [1 +
1
𝑎 (
𝜀 + 𝑠𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1

∑ [1 +
1
𝑎 (
𝜀 + 𝑠𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1

 ( 25 ) 

where 𝑢𝑞 is given by ( 13 ) in the t-truncated normal and ( 14 ) in the t-exponential models, 

for example. These expressions become slightly more complex in the t-gamma case, but are 

derived in the same way, giving 

 exp[𝐸(−𝑢|𝜀)] = exp

[
 
 
 
 
 

−

∑ (− ln𝐹𝑖𝑞)
𝑏
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 ( 26 ) 

𝐸[exp(−𝑢|𝜀)] =

∑ (− ln𝐹𝑖𝑞)
𝑏−1

exp(𝜎𝑢 ln 𝐹𝑖𝑞) [1 +
1
𝑎 (
𝜀 − s𝜎𝑢 ln 𝐹𝑖𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄
𝑞=1

∑ (− ln 𝐹𝑖𝑞)
𝑏−1

[1 +
1
𝑎 (
𝜀 − s𝜎𝑢 ln 𝐹𝑖𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄
𝑞=1

 ( 27 ) 

3.3. Hypothesis Testing 

As discussed previously, an attraction of the Student’s t distribution in the current context is 

that it nests the normal distribution as 𝑎 → ∞, and therefore a stochastic frontier model in which 

𝑣 follows a Student’s t distribution nests a model in which 𝑣 follows a normal distribution, for 

any given distribution of 𝑢. This allows us to test down from a model with Student’s t noise to 
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a standard SF model, which could be interpreted as a testing for thick tails—or the significance 

of outliers in the data—and used for model selection. For this purpose, the likelihood ratio test 

statistic is an obvious choice. This is defined as 

 LR = −2(ln 𝑆𝐿𝐴 − ln 𝐿0) ( 28 ) 

Where ln 𝑆𝐿𝐴 is the simulated log-likelihood from the Student’s t model and ln 𝐿0 is the log-

likelihood from the null model with normally distributed 𝑣. The standard result that this statistic 

has a limiting 𝜒2 distribution with degrees of freedom equal to the difference in dimensionality 

between the alternative and null models does not apply, since under the null hypothesis the 

degrees of freedom parameter 𝑎 lies on the boundary of the parameter space. In such cases, 

Case 5 in Self and Liang (1987)—see also Case 2 in Chen and Liang (2010)—shows that the 

likelihood ratio statistic follows an asymptotic 50:50 mixture of 𝜒0
2 and 𝜒1

2 distributions, 

denoted 𝜒1:0
2 . Economou (2011) applies this result to an analogous problem in survival analysis: 

that of testing down from a three parameter Burr XII distribution to a two parameter Weibull 

distribution, which it nests as a ‘frailty’ parameter approaches zero. A further analogue is 

testing for the presence of an upper bound on 𝑢, since an SF model with a tail truncated 

distribution for 𝑢 nests the standard SF model as the tail truncation point 𝐵 → ∞. Note that 

under the null hypothesis that 𝜎𝑢 = 0, the model reduces to a regression model with Student’s 

t errors. 

4. Application to Highways Maintenance Costs in England 

In this section, we apply a Student’s t-half normal model to the data set on highway 

maintenance costs in England used by Stead et al. (2017). In England, responsibility for road 

maintenance is divided between Highways England—until 2015 the Highways Agency—a 

publicly-owned company responsible for the strategic ‘trunk road network’, and the county 
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councils and unitary authorities, who maintain the non-trunk roads within their boundaries. Our 

data are from the CQC Efficiency Network1 and consist of costs and cost drivers associated 

with local authorities’ highway maintenance activities. 

Previous studies of road maintenance costs have focussed on the issue of marginal costs, and 

their implications for road pricing, rather than relative efficiency: these use data on motorways 

and canton roads in Switzerland (Schreyer et al., 2002), motorways in Austria (Sedlacek and 

Herry, 2002), roads in Sweden (Haraldsson, 2006; Jonsson and Haraldsson, 2008),  trunk roads 

in Poland (Bak et al., 2006; Bak and Borkowski, 2009), and motorways and federal roads in 

Germany (Link, 2006; 2009; 2014). One exception to the marginal cost focus of empirical 

studies, is a study of efficiency in road maintenance is that of Fallah-Fini et al. (2009), which 

applies DEA to data on eight counties of the US state of Virginia, with expenditure, traffic and 

equivalent single axle loads as inputs, road area and quality indicators as outputs, and climate 

factors as non-discretionary variables. 

We used an unbalanced panel consisting of data on the 70 English unitary authorities and 

county councils that were members of the CQC efficiency network in 2015-16 and supplied 

data for at least one year from 2009-10 to that year; this gives us 327 observations in total. Cost 

data were supplied to the network by each authority according to definitions agreed by a 

working group of network members, and relate to carriageway maintenance activities only, i.e. 

they exclude costs associated with related activities such as winter service and footway 

maintenance. The data set is updated annually for a new round of analysis, and in this study we 

use the data set from the 2015-16 round, which was the first year that the network ran. We 

observe large differences in unit costs, with a large number of extreme outliers in both 

                                                 

1 See http://www.nhtnetwork.org/cqc-efficiency-network/home/ 

http://www.nhtnetwork.org/cqc-efficiency-network/home/
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directions, that are clearly the result of reporting errors. As a result, standard SF models yield 

a wide range of efficiency predictions, motivating the development of robust SF methods. 

In line with the previous literature mentioned above—see Link (2014) for a summary—we use 

road length and traffic variables as output variables. Detailed breakdowns of local authorities’ 

total road lengths into urban and rural and by classification are publicly available from the 

Department for Transport (DfT). Roads in the UK are classified as: M (motorways), A, B, 

classified unnumbered, or unclassified; we hereafter refer to the latter two as C and U, 

respectively. The trunk road network, maintained in England by Highways England, consists 

of motorways and trunk A roads, leaving non-trunk A roads and all B, C, and U roads as the 

responsibility of local authorities. Our road length data therefore exclude motorways and trunk 

A roads, and likewise we use traffic data supplied by DfT which relate only to local authority 

maintained roads. 

We separate total network length into urban and rural road lengths, 𝑈𝑅𝐿 and 𝑅𝑅𝐿, and also 

include a set of proportion variables relating to each road classification. To control for network 

quality, we include three road condition indicators, also available from the DfT: 𝑅𝐷𝐶𝐴, 

𝑅𝐷𝐶𝐵𝐶, and 𝑅𝐷𝐶𝑈 relating to the proportion of A roads, B and C roads, and U roads 

respectively where maintenance should be considered. We weight these by the corresponding 

share of their road classifications in total network length. Our input price variables are: 𝑊𝐴𝐺𝐸, 

the median hourly wage in civil engineering by NUTS1 region from the Annual Survey of 

Hours and Earnings (ASHE), published by the Office for National Statistics (ONS), and a 

national index of materials prices in road construction that were published by the Department 

of Business, Innovation and Skills (BIS), 𝑅𝑂𝐶𝑂𝑆𝑀. We use a modified Cobb-Douglas 

functional form including second-order terms relating to urban and rural road length. The 

model is 
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ln 𝑇𝑂𝑇𝐸𝑋 =𝛽0 + 𝛽1 ln 𝑈𝑅𝐿 + 𝛽2 ln 𝑅𝑅𝐿 + 𝛽3 ln𝑈𝑅𝐿
2 + 𝛽4 ln 𝑅𝑅𝐿

2

+ 𝛽5 ln 𝑈𝑅𝐿 ln 𝑅𝑅𝐿 + 𝛽6 ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶 + 𝛽7𝑅𝐷𝐶𝐴 + 𝛽8𝑅𝐷𝐶𝐵𝐶

+ 𝛽9𝑅𝐷𝐶𝑈 + 𝛽10𝑃𝑅𝑂𝑃𝑈𝐴 + 𝛽11𝑃𝑅𝑂𝑃𝑈𝐵 + 𝛽12𝑃𝑅𝑂𝑃𝑈𝐶

+ 𝛽13𝑃𝑅𝑂𝑃𝑈𝑈 + 𝛽14𝑃𝑅𝑂𝑃𝑅𝐴 + 𝛽15𝑃𝑅𝑂𝑃𝑅𝐵 + 𝛽16𝑃𝑅𝑂𝑃𝑅𝐶

+ 𝛽17𝑌𝐸𝐴𝑅 + 𝛽18 ln𝑊𝐴𝐺𝐸 + 𝛽19 ln 𝑅𝑂𝐶𝑂𝑆𝑀 + 𝜀 

( 29 ) 

where 𝑇𝑂𝑇𝐸𝑋 is total expenditure, 𝑃𝑅𝑂𝑃𝑈𝐴 through to 𝑃𝑅𝑂𝑃𝑅𝐶 are urban A roads, urban B 

roads, etc. as proportions of the total network length, with the proportion of rural unclassified 

roads omitted, and 𝑌𝐸𝐴𝑅 is a time trend. All variables are mean-centred, and linear 

homogeneity in input prices is imposed. 

Table 1 compares results from the Student’s t-half normal and normal-half normal models, 

showing parameter estimates, standard errors and significance levels. The Student’s t-half 

normal model was coded into a modified version of LIMDEP, along with formulae for 

efficiency predictions as discussed in the previous section. The simulations were based upon 

100 Halton draws. 
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Table 1: Outputs from the Student’s t-half normal and normal-half normal models 

 Student’s t-Half Normal Normal-Half Normal 

 Estimate s.e. Sig Estimate s.e. Sig 

𝛽0 16.058 0.092 *** 16.035 0.145 *** 

𝛽1 (ln 𝑈𝑅𝐿) 0.149 0.107  0.127 0.171  

𝛽2 (ln 𝑅𝑅𝐿) 0.895 0.113 *** 0.917 0.179 *** 

𝛽3 (ln𝑈𝑅𝐿2) 0.236 0.043 *** 0.241 0.063 *** 

𝛽4 (ln 𝑅𝑅𝐿2) 0.082 0.010 *** 0.085 0.016 *** 

𝛽5 (ln𝑈𝑅𝐿 ln𝑅𝑅𝐿) -0.064 0.028 ** -0.081 0.044 * 

𝛽6 (ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶) 0.366 0.099 *** 0.415 0.154 *** 

𝛽7 (𝑅𝐷𝐶𝐴) 0.432 0.094 *** 0.464 0.144 *** 

𝛽8 (𝑅𝐷𝐶𝐵𝐶) -0.071 0.026 *** -0.071 0.039 * 

𝛽9 (𝑅𝐷𝐶𝑈) -0.004 0.003  -0.005 0.005  

𝛽10 (𝑃𝑅𝑂𝑃𝑈𝐴) 8.690 1.941 *** 7.810 3.241 ** 

𝛽11 (𝑃𝑅𝑂𝑃𝑈𝐵) 1.642 2.279  0.662 3.869  

𝛽12 (𝑃𝑅𝑂𝑃𝑈𝐶) 0.273 1.196  0.448 2.054  

𝛽13 (𝑃𝑅𝑂𝑃𝑈𝑈) 0.969 0.547 * 1.090 0.835  

𝛽14 (𝑃𝑅𝑂𝑃𝑅𝐴) 2.612 1.045 ** 2.120 1.571  

𝛽15 (𝑃𝑅𝑂𝑃𝑅𝐵) 2.417 1.056 ** 2.678 1.544 * 

𝛽16 (𝑃𝑅𝑂𝑃𝑅𝐶) 1.015 0.641  0.983 0.988  

𝛽17 (𝑌𝐸𝐴𝑅) 0.038 0.011 *** 0.045 0.017 *** 

𝛽18 (ln𝑊𝐴𝐺𝐸) 0.779 0.223 *** 0.891 0.340 *** 

(1 − 𝛽18) (ln 𝑅𝑂𝐶𝑂𝑆𝑀) 0.221 - - 0.109 - - 

𝜎𝑢 0.535 0.046 - 0.568 0.074 - 

𝜎𝑣 0.233 0.016 - 0.276 0.043 - 

𝑎 5.198 1.510 - ∞ - - 

Log Likelihood -186.06 - - -189.14 - - 

Statistical significance at the: * 10% level, ** 5% level, *** 1% level 
 

We can see from Table 1 that both models result in generally similar parameter estimates; the 

main difference is in the standard errors of these estimates, which are approximately a third 

smaller in the t-half normal model than in the normal-half normal model. Note that while the 

𝜎𝑢 parameters are comparable between the two models, the 𝜎𝑣 parameters are not, since the 

distribution of 𝑣 varies. The variance of 𝑢 is given in both cases by: 
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VAR(𝑢) =

𝜋 − 2

𝜋
𝜎𝑢
2 ( 30 ) 

While the variance of 𝑣 is, in the t-half normal and normal-half normal cases respectively: 

 VAR(𝑣) = 𝜎𝑣
2

𝑎

𝑎 − 2
 ( 31 ) 

 VAR(𝑣) = 𝜎𝑣
2 ( 32 ) 

Our estimates of these are compared in below. 

Table 2: Estimated error variances 

 Student’s t-Half Normal Normal-half normal 

VAR(𝑢) 0.104 0.117 

VAR(𝑣) 0.088 0.076 

VAR(𝜀) 0.192 0.194 

 

Table 2 shows that, in line with our expectations, and the findings of Stead et al. (2017) relating 

to the logistic-half normal model, that the Student’s t-half normal model results in a lower 

estimated variance in inefficiency than the normal-half normal model, and that more of the 

total error variance is attributed to 𝑣. The overall error variance is also slightly lower, likewise 

mirroring the results from the logistic-half normal model. Following from this, according to 

the discussion in Section 1, we expect to find a considerably narrower distribution of efficiency 

predictions from the t-half normal model owing to both the lower estimated 𝑉𝐴𝑅(𝑢) and the 

greater shrinkage towards the mean resulting from the higher estimated 𝑉𝐴𝑅(𝑣). 

Table 3: Summary of efficiency scores 

 Student’s t-Half Normal Normal-half normal 

Mean 0.721 0.660 

Minimum 0.527 0.225 

Maximum 0.855 0.918 
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Table 3 compares the mean, minimum and maximum efficiency scores from the t-half normal 

and normal-half normal models obtained via exp[−𝐸(𝑢|𝜀)]. As expected, the minimum 

efficiency estimate is considerably higher, and the maximum also significantly lower, in the t-

half normal model, and therefore the range of efficiency scores is remarkably smaller: in this 

case less than half. A more complete description is given by Figure 1, which compares the 

kernel density estimates for the two sets of efficiency scores. 

 

Figure 1: Kernel densities of cost efficiency scores 

As well as the distribution of efficiency predictions, we are also particularly interested in 

predictions at the tails. Figure 2 compares the relationships between the estimated residuals 

and efficiency predictions from the t-half normal and normal-half normal models. 
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Figure 2: Scatterplot of cost efficiency scores vs residuals 

Given the similarity of the frontier parameter estimates, as shown in Table 1, the residuals from 

the t-half normal and normal-half normal models are highly correlated. However the 

relationships between the residuals and efficiency predictions is shown by Figure 2 to be 

substantially different between the two models: for values of ln 𝜀 between around -0.5 and 1.5, 

the slope of the function is considerably flatter in the t-half normal case, so that a change in 𝜀 

results in a much smaller change in exp[−𝐸(𝑢|𝜀)]. However, the most striking difference is 

that the relationship is non-monotonic in the t-half normal case, with exp[−𝐸(𝑢|𝜀)] beginning 

to decrease slightly for the smallest values of 𝜀 and increase very considerably for the largest 

values of 𝜀. This is in contrast to the Standard SF model, and also the Logistic-half normal 

model as shown by Stead et al. (2017), in which the relationship is monotonic. The explanation 
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for this non-monotonicity in the t-half normal case is that for outlying observations, the 

uncertainty associated with exp[−𝐸(𝑢|𝜀)] increases and further increases in |𝜀| are attributed 

to 𝑣 to such an extent that there is a reduction in exp[−𝐸(𝑢|𝜀)]. 

As discussed in Section 3.3, we are interested in testing two null hypotheses: first, that 𝑣 is 

normally distributed, in which case the t-half normal nests the normal-half normal model, and 

second that there is no inefficiency, and the likelihood ratio follows a 𝜒1:0
2  distribution in both 

cases. Log-likelihoods are given in Table 1, and are used to calculate the likelihood ratio 

statistic as shown in ( 28 ) for the first null hypothesis: this gives a likelihood ratio of 4.155 

and a corresponding p-value of 0.012. For our second null hypothesis, the t-half normal model 

reduces to a regression model with Student’s t errors: we do not report the results of this 

regression, except the log-likelihood, which is -189.140, so in this case we have a likelihood 

ratio of 4.150 and a corresponding p-value of 0.012. We therefore reject the null hypotheses of 

normally distributed 𝑣 and zero inefficiency, indicating that this model performs better than 

either the standard SF model or the Student’s t regression model in this instance. 

5. Summary and Conclusions 

This paper proposes a new stochastic frontier model as means to account for outliers in the 

context of SFA. We have reviewed possible methods in the existing literature, including the 

adopting alternative distributional assumptions for 𝑣. Our model develops the approach of 

Stead et al. (2017), in which maximum simulated likelihood methods are used to estimate a 

model combining a logistic distribution for 𝑣 with a half normal distribution for 𝑢, by using a 

Student’s t distribution for 𝑣. The advantages of this distribution is that the kurtosis of 𝑣 is 

determined by a degrees of freedom parameter which is freely estimated, and that it nests the 

normal distribution as this parameter approaches infinity. This means that the heaviness of the 
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tails of 𝑣, reflecting the prevalence of outliers in the data, is flexible, and that testing down to 

the standard SF model is possible. We derive log-likelihoods and efficiency predictors for the 

t-truncated normal and t-gamma cases, and discuss extension to other distributions for 𝑢, which 

is straightforward. 

We apply a t-half normal model to estimate a cost frontier using a data set on English local 

authorities’ highway maintenance costs, and compare the model’s outputs with those from the 

normal-half normal model. We find similar frontier parameter estimates from the two models, 

though with reduced standard errors in the t-half normal model. The main differences are a 

reduced estimate of 𝑉𝐴𝑅(𝑢) and an increased estimate of 𝑉𝐴𝑅(𝑣), a reduced range of 

efficiency predictions according to exp[−𝐸(𝑢|𝜀)], and a non-monotonic relationship between 

𝜀 and exp[−𝐸(𝑢|𝜀)], in contrast to the standard SF model. We discuss testing against the 

standard SF model, and find that we are able to reject the null hypotheses of normally 

distributed 𝑣 and no inefficiency. This suggests that it is important to account for heavy tails 

in our data. 
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7. Appendix 

First order conditions for maximisation of the t-truncated normal log likelihood are 
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In the t-gamma case, we have the first-order conditions 
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The derivatives needed to complete the first order conditions above are as follows: 
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In the t-truncated normal and t-gamma cases, respectively, we have: 
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